ARTYKUŁ SPECJALNY / STATE-OF-THE-ART REVIEW

Coenzyme Q_{10} and congestive heart failure: an evolving evidence base

Christopher M. Florkowski, Sarah L. Molyneux, Joanna M. Young

Clinical Biochemistry Unit, Canterbury Health Laboratories, Christchurch Hospital, Christchurch, New Zealand

Chris Florkowski is a Consultant in Chemical Pathology at Canterbury Health Laboratories in Christchurch, New Zealand and also a Physician. He has held many roles within the Australasian Association of Clinical Biochemists, including Vice-President of Education and Training. He is currently Chair of the Committee of Evidence Based Laboratory Medicine (c-EBLM) of the International Federation of Clinical Chemistry (IFCC) and has a strong interest in how laboratory tests leverage clinically important decisions. His late father came from Lwow and he has contact with many family members in Poland.

THE Q-SYMBIO STUDY AND ITS IMPLICATIONS

The recently published Q-SYMBIO clinical trial has provided support that coenzyme Q$_{10}$ (CoQ$_{10}$) supplementation should be considered as a part of the maintenance therapy of patients with chronic heart failure (CHF) [1]. The Q-SYMBIO study concluded that long-term CoQ$_{10}$ treatment of patients with CHF is safe, improves symptoms, and reduces major adverse cardiovascular (CV) events [1].

This was a randomised, controlled, double-blind intervention trial (RCT), conducted in many centres in nine countries including Poland. Q-SYMBIO was initiated with CoQ$_{10}$ supplementation in CHF patients and focused on symptoms, biomarker status (BNP) and long-term outcomes.

A total of 420 patients with moderate to severe CHF were randomly assigned in a two-year prospective trial to either CoQ$_{10}$ 100 mg three times daily or a placebo, in addition to standard therapy. There were no changes in primary end-points at 16 weeks. These included changes in New York Heart Association (NYHA) functional classification, six-min walk test, and levels of N-terminal pro-B type natriuretic peptide (NT-proBNP).

The primary long-term end-point (composite major adverse CV events as determined by a time-to-first-event analysis), was reached by 15% of the patients in the CoQ$_{10}$ group vs. 26% in the placebo group (hazard ratio [HR] 0.50; 95% confidence interval [CI] 0.32–0.80; $p = 0.003$) by intention-to-treat analysis (Fig. 1). This included secondary end-points, which were significantly lower in the CoQ$_{10}$ group compared to the placebo group: CV mortality (9% vs. 16%; $p = 0.026$), all-cause mortality (10% vs. 18%; $p = 0.018$), and incidence of hospital stays for heart failure (HF) ($p = 0.033$). In addition, a significant improvement of NYHA class was found in the CoQ$_{10}$ group after two years ($p = 0.028$).

Q-SYMBIO is the first RCT with adequate size, dosage of CoQ$_{10}$, and duration of follow-up to evaluate the efficacy of CoQ$_{10}$ on morbidity and most importantly, major clinical end-points such as mortality in CHF.

The findings have implications for clinical practice, by providing a more robust evidence base for CoQ$_{10}$ intervention in CHF patients. In addition, it has a good safety profile and is readily available over the counter without prescription.

The present review examines the background as to why the Q-SYMBIO study came about. Starting with the role of CoQ$_{10}$ in biological systems, it covers what previous studies have discovered about CoQ$_{10}$ and cardiac function. This includes observational studies, intervention studies prior to Q-SYMBIO, meta-analyses [2–4] and a Cochrane review [5]. Statin drugs, used to lower cholesterol as part of CV prevention strategies, are also known to lower CoQ$_{10}$, through their action on the mevalonate pathway [6]. The present review discusses the findings of studies with statin intervention in CHF and their implications. It also provides a commentary of Q-SYMBIO with caveats and recommendations for future studies.

Address for correspondence:
Christopher M. Florkowski, Clinical Associate Professor, Clinical Biochemistry Unit, Canterbury Health Laboratories, P.O. Box 151, Christchurch 8140, New Zealand, tel: +64 3 364 0300, e-mail: chris.florkowski@cdhb.health.nz

Received: 13.01.2015 Accepted: 19.01.2015

Copyright © Polskie Towarzystwo Kardiologiczne

www.kardiologiapolska.pl
THE ROLE OF COENZYME Q\textsubscript{10} IN BIOLOGICAL SYSTEMS

CoQ\textsubscript{10} (Fig. 2), a 1,4-benzoquinone with an isoprenoid side chain, was first isolated from beef heart mitochondria by Frederick Crane of Wisconsin, USA, in 1957 [7]. CoQ\textsubscript{9} and CoQ\textsubscript{10} are present in human plasma with CoQ\textsubscript{10} dominant complex 1 (NADH coenzyme Q reductase) to complex 3 (cytochrome bc\textsubscript{1} complex), or from complex 2 (succinate dehydrogenase) to complex 3. The reduced form of CoQ\textsubscript{10} can act as an antioxidant directly protecting biological membranes against oxidation [17] as well as by inhibiting the peroxidation of lipoprotein lipids in the circulation [18]. Indeed, supplementation with exogenous CoQ\textsubscript{10} has been shown to lead to an increase in the CoQ\textsubscript{10H}_{2} content of LDL, and a decrease of their peroxidisability [19]. As an antioxidant, CoQ\textsubscript{10H}_{2} may also have a role in recycling alpha-tocopherol, which may also have favourable implications for the pathogenesis of vascular disease [20].

COENZYME Q\textsubscript{10} AND CARDIAC FUNCTION

Given the vital importance of CoQ\textsubscript{10} in mitochondrial electron transport and ATP synthesis, it is not surprising that the myocardium has the highest concentration of CoQ\textsubscript{10} compared to other tissues [16] and its depletion has been postulated to lead to ‘energy starvation’ of the myocardium and have a pathogenic role in the aetiology of CHF. Indeed, myocardial depletion of CoQ\textsubscript{10} has been demonstrated in HF and the severity of the deficiency has been found to correlate with the severity of symptoms, with patients in NYHA class IV having significantly lower CoQ\textsubscript{10} in endo-myocardial biopsy samples than those in NYHA class I [21].

There are also some findings that suggest that oxidative stress is increased in patients with CHF, is inversely correlated with left ventricular ejection fraction (LVEF) [22], and may predict clinical outcomes [22]. Coenzyme Q\textsubscript{10} may also have a role in stabilising myocardial calcium-dependent ion channels and in preventing the consumption of metabolites essential for ATP synthesis [23].
An interesting observation is that total cholesterol is related to survival in CHF [24, 25]. In the study of Rauchhaus et al. [24], serum total cholesterol was independently associated with total mortality in a CHF cohort, with increasing serum total cholesterol predicting survival (HR 0.64, 95% CI 0.48–0.86), independent of the aetiology of CHF, age, LVEF and exercise capacity [24]. Although this seems somewhat counter-intuitive, postulated mechanisms for this association were that cholesterol may be limiting lipo-polysaccharide-induced production of cytokines, and that high cholesterol may provide a greater ‘metabolic reserve’ to deal with the CHF syndrome. The authors did not, however, make reference to CoQ10, which is known to correlate with plasma total and LDL-cholesterol concentration [8–15] and which could be postulated to explain the worse outcomes seen in CHF patients with low cholesterol. Cardiac cachexia (lean tissue wasting associated with HF) was not considered to be a contributory mechanism in this group of patients, given that lipid levels were no different between patients with and without cachexia and that survival was independent of the presence of cachexia [24].

In a recent observational study, our group showed that CoQ10 level, but not statin therapy (known to lower CoQ10 in HF [6]), was an independent predictor of total mortality in a cohort of 236 subjects with HF [26]. We were unable to confirm that cholesterol was associated with survival in this cohort [26], although our patients were older and were followed for longer than the cohort of Rauchhaus et al. [24].

The important role played by CoQ10 in myocardial bio-energetics and cardiac function set the scene for numerous intervention studies and led to the conception of the Q-SYMBIO study [1, 27].

COENZYME Q10 AND HEART FAILURE

INTERVENTION STUDIES WITH COENZYME Q10 IN HEART FAILURE

Over the past few decades, several uncontrolled observational studies have been reported in the CHF population. They measured symptoms, ejection fraction, left ventricular size, and quality of life measurements before and after treatment with CoQ10. Although they show dramatic improvements, severe study design flaws have limited their applicability [28–35].

There are, however, several small, randomised, blinded trials comparing CoQ10 with placebo dating back many decades. Some studies have shown that supplementation of CoQ10 over a relatively short time can improve systolic function and reduce ventricular size, whereas others showed no advantage over placebo. It may be contended that these neutral trials lack adequate power to detect an advantage or, conversely, that positive trials may give an exaggerated effect size because of small sample sizes. It is also possible that certain patients respond to CoQ10 supplementation and others do not, depending on the severity or aetiology of CHF. Results of these smaller trials have subsequently been pooled, in an attempt in increase power and provide insight into its true effectiveness.

Meta-analyses of CoQ10 supplementation in CHF have been undertaken [3, 36, 37]. Soja and Mortensen [36] reviewed eight double-blind placebo-controlled studies [38–45] and reported significant improvements in stroke volume, ejection fraction, cardiac output, cardiac index, and end-diastolic volume index, as a consequence of CoQ10 supplementation.

In another meta-analysis, Sander et al. [3] reviewed 12 studies, ten that evaluated ejection fraction [38, 40–42, 45–50] and two that evaluated cardiac output [44, 46] with CoQ10 doses ranging from 60 to 200 mg/day and treatment.
In this analysis [50], subgroup analysis could not be performed to determine if concomitant beta-blocker or, for that matter, angiotensin II receptor blocker, or aldosterone-receptor antagonist therapy, would also negate the benefits of CoQ₁₀.

Given that patients with more severe CHF (NYHA classes III and IV) have lower plasma and myocardial levels of CoQ₁₀ than those with less severe HF (NYHA classes I and II), it was considered that those with the most severe HF (NYHA class IV) would benefit the most from CoQ₁₀, although this was

Table 1. Trials evaluating coenzyme Q₁₀ in heart failure in meta-analysis of Sander et al. [3]

<table>
<thead>
<tr>
<th>Crossover trials</th>
<th>Age</th>
<th>Dose used</th>
<th>Treatment duration</th>
<th>Aetiology of chronic HF</th>
<th>NYHA class</th>
<th>Other HF medications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hofman-Bang, 1995; (n = 69) [45]</td>
<td>61 (10)</td>
<td>100 mg QD</td>
<td>3 months (no washout)</td>
<td>Ischaemic and non-ischaemic (idiopathic, hypertensive, valvular, other)</td>
<td>II–IV (76% class II)</td>
<td>75% digoxin, 96% diuretics, 60% ACEI, no BB</td>
</tr>
<tr>
<td>Langsjoen, 1985; (n = 19) [47]</td>
<td>63</td>
<td>33.3 mg TID</td>
<td>3 months (no washout)</td>
<td>Idiopathic</td>
<td>III–IV</td>
<td>100% digoxin, 94% diuretics; no ACEI or BB</td>
</tr>
<tr>
<td>Morisco, 1994; (n = 6) [40]</td>
<td>29 (6.7)</td>
<td>50 mg TID</td>
<td>1 month (no washout)</td>
<td>4 CAD and 2 idiopathic</td>
<td>II–IV</td>
<td>Nitro derivatives; no ACEI or BB</td>
</tr>
<tr>
<td>Poggesi, 1991; (n = 18) [42]</td>
<td>67 (2.3)</td>
<td>50 mg BID</td>
<td>2 months</td>
<td>13 idiopathic, 7 ischaemic (18 completed the study)</td>
<td>II–III</td>
<td>Digoxin, diuretics, ACEI</td>
</tr>
<tr>
<td>Serra, 1991; (n = 20) [44]</td>
<td>59 (6.6)</td>
<td>60 mg QD</td>
<td>1 month (no washout)</td>
<td>13 CAD, 7 hypertensive</td>
<td>II–III</td>
<td>Digoxin, diuretics, nitrates</td>
</tr>
<tr>
<td>Watson, 1999; (n = 27) [48]</td>
<td>55 (11)</td>
<td>33 mg TID</td>
<td>3 months</td>
<td>77% idiopathic, 23% ischaemic</td>
<td>Mean 41 months duration, EF < 35%</td>
<td>80% digoxin, 93% diuretics, 83% nitrates or hydralazine, 100% ACEI, no BB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parallel trials</th>
<th>Age</th>
<th>Dose used</th>
<th>Treatment duration</th>
<th>Aetiology of chronic HF</th>
<th>NYHA class</th>
<th>Other HF medications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keogh, 2003; (n = 35) [49]</td>
<td>62 (8)</td>
<td>50 mg TID</td>
<td>3 months</td>
<td>Ischaemic, valvular, idiopathic</td>
<td>II–III; EF < 40%</td>
<td>71% digoxin, 91% diuretics, 22% nitrates or hydralazine, 100% ACEI, no BB</td>
</tr>
<tr>
<td>Khatta, 2000; (n = 46) [50]</td>
<td>64</td>
<td>200 mg/day</td>
<td>6 months</td>
<td>59% ischaemic</td>
<td>III–IV (91% class III); EF < 40%</td>
<td>96% diuretics, 100% digoxin, 100% ACEI or other vasodilators, 78% BB</td>
</tr>
<tr>
<td>Munkholm, 1995; (n = 22) [46]</td>
<td>57</td>
<td>100 mg BD</td>
<td>3 months</td>
<td>Ischaemic or dilated</td>
<td>II–III; EF < 45%</td>
<td>55% digoxin, 86% diuretics, 95% ACEI, no BB</td>
</tr>
<tr>
<td>Judy, 1986; (n = 10) [38]</td>
<td>66</td>
<td>100 mg/day</td>
<td>6 months</td>
<td>Various aetiologies</td>
<td>IV</td>
<td>Unknown</td>
</tr>
<tr>
<td>Permanetter, 1992; (n = 25) [41]</td>
<td>52</td>
<td>100 mg/day</td>
<td>3 months</td>
<td>Idiopathic</td>
<td>I–III (60% class III)</td>
<td>92% digoxin, 64% diuretics, 44% nitrates or nifedipine</td>
</tr>
</tbody>
</table>

ACEI — angiotensin-converting enzyme inhibitor; BB — beta-blockers; BD — twice daily; CAD — coronary artery disease; EF — ejection fraction; HF — heart failure; NYHA — New York Heart Association; QD — once daily; TID — three times daily

periods ranging from one to six months (Table 1). Overall, a 3.7% (95% CI 1.59–5.77) net improvement in the ejection fraction was found, and cardiac output was increased on average of 0.28 L/min (95% CI 0.03–0.53) [3]. Although cardiac index and stroke volume were not significantly affected by themselves, only a few studies with these parameters were included in these analyses and it is possible that the analysis was underpowered.

On subgroup analysis in this meta-analysis, it was postulated that CoQ₁₀ may act through reduction in afterload. In support of this hypothesis, studies that included angiotensin converting enzyme inhibitors (ACEI) showed no increase in ejection fraction, whereas those without ACEI showed a 6.7% increase. This therefore suggests that CoQ₁₀ therapy may be best targeted at patients who are intolerant of ACEI.

Unfortunately, beta-blockers were only used in one trial evaluated in this analysis [50]; therefore, subgroup analysis could not be performed to determine if concomitant beta-blocker or, for that matter, angiotensin II receptor blocker, or aldosterone-receptor antagonist therapy, would also negate the benefits of CoQ₁₀.
WHAT ARE THE IMPLICATIONS FOR STATIN THERAPY?

This also brings into perspective the role of statins and whether they may confer benefit or not in patients with CHF, given the likely underlying ischaemic aetiology in many patients [51]. Although they may be expected to confer benefit through cholesterol reduction, they also lower CoQ₁₀ [6], given that they work through the common mevalonate pathway (Fig. 4). However, the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA) investigators failed to show a reduction in major vascular events in older patients with systolic HF [52]. Similarly, in the GISSI-HF study (which included CHF patients with both ischaemic and non-ischaemic aetiologies), there was also no reduction in vascular adverse outcomes with rosuvastatin therapy [53].

A plausible explanation for this may be the reduction in CoQ₁₀, as our group has shown to occur in patients with non-ischaemic HF [54]. We showed that 40 mg atorvastatin led to a 33% reduction in CoQ₁₀ levels in non-ischaemic HF subjects, though this did not compromise improvements in endothelial function [54]. There was also a significant association (r = −0.585; p = 0.011) between CoQ₁₀ reductions and improvement in endothelial function with forearm plethysmography, suggesting that the improvement in endothelial function with atorvastatin therapy is mediated through ‘non-lipid pleiotropic’ pathways. This study postulated a role of CoQ₁₀ as a potential surrogate marker for improvement in endothelial function in resistance vessels, and it was also hypothesised that further benefits may accrue with concomitant CoQ₁₀ supplementation.

The CORONA investigators subsequently measured serum CoQ₁₀ in a pre-specified subset of 1,191 patients with ischaemic systolic HF and related this to clinical outcomes.

Figure 4. The mevalonate pathway. Inhibition of hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase by statins leads to depletion in products of the pathway including cholesterol and coenzyme Q₁₀; reproduced with permission from the Australasian Association of Clinical Biochemists.
Patients with lower CoQ\textsubscript{10} concentrations were older and had more advanced HF. Mortality was significantly higher among patients in the lowest compared to the highest CoQ\textsubscript{10} tertile in a univariate analysis (HR 1.50; 95% CI 1.04–2.6; p = 0.03), but not in a multivariable analysis. CoQ\textsubscript{10} was not found to be an independent prognostic variable in HF [55], in contrast with the findings of our previous similar study [26].

Given these observations, and the complex interplay of cholesterol, statin therapy and clinical outcomes in HF, future trials incorporating a CoQ\textsubscript{10} supplementation arm together with statin may be postulated to confer improved clinical outcomes that CORONA did not show [52].

The conflicting findings from these observational studies also gave further impetus to the establishment of a good randomised controlled clinical trial.

WHAT ABOUT THE ROLE OF COENZYME Q\textsubscript{10} FOR CARDIAC FUNCTION IN OTHER SETTINGS?

Supplementation of CoQ\textsubscript{10}, and also selenium in a cohort of community-dwelling elderly people reduced the progression of cardiac wall tension, as measured by the cardiac biomarker NT-proBNP and CV mortality, mainly in participants whose baseline plasma NT-proBNP ranged from the second to the fourth quintiles of the peptide [56]. This could be interpreted as indicating that the therapeutic response may be more pronounced in participants who are in the early stages of development of cardiac dysfunction and could provide a basis to initiate larger randomised trials evaluating the effect of CoQ\textsubscript{10} and selenium on patients with HF.

COMMENTARY

Q-SYMBO still is a relatively small trial by pharmaceutical standards. In order to influence clinical behaviour on a more significant scale, it should ideally be replicated independently. It is hoped that its recent publication [1] will stimulate further interest and impetus to undertake such intervention trials.

Conflict of interest: none declared

References

19. Mohr D, Bowry VW, Stocker R. Dietary supplementation with coenzyme Q10 results in increased levels of ubiquinol-10 within