Late right pulmonary artery stenosis after arterial switch operation in mirror image dextrocardia and situs inversus totalis

Późne zwężenie tętnicy płucnej po korekcji anatomicznej przełożenia wielkich pni tętniczych u noworodka z przełożeniem trzewi

Krzysztof Mozol, Piotr Burczyński, Ireneusz Haponiuk

The Children’s Memorial Health Institute, Cardiac Surgery, Warsaw, Poland

Abstract

The operation of D-transposition of the great arteries is performed extremely rarely in patients with mirror image dextrocardia and situs inversus totalis. Therefore, it is not surprising that such unusual anatomy case presents problems with primary operation. We present a case of late right pulmonary artery stenosis after neonatal surgical anatomic correction of mirror image dextrocardia and situs inversus totalis.

Key words: arterial switch operation, mirror image dextrocardia

INTRODUCTION

D-transposition of the great arteries (D-TGA) requires surgical correction in the neonatal period. Modern surgical management of D-TGA, without left ventricular outflow tract obstruction, is based on an arterial switch operation (ASO), first described in 1975. Nevertheless, operations of this type are performed extremely rarely in patients with mirror image dextrocardia and situs inversus totalis [1–3]. The first case with such unique anatomy of the heart was described by McMahon et al. in 2000 [1]. This atypical anatomy frequently causes difficulties during heart surgery [1, 2]. Furthermore, the location of pulmonary artery (PA) branches close behind the arterial duct increases the risk of iatrogenic injury of the right PA. We present a case of late right PA stenosis after neonatal surgical anatomical correction of mirror image dextrocardia and situs inversus totalis.

CASE REPORT

A baby boy, 3.6 kg, neonate with the diagnosis of D-TGA and mirror image dextrocardia, was referred for ASO. Extracorporeal circulation was commenced and the procedure was done using the Lecompt manoeuvre. The right PA was incidentally injured during separation of the ductus arteriosus. Reconstruction of the right PA was done using a fresh autologous pericardial patch. The post-surgery measurements were normal, and the child was transferred to the Intensive Care Unit under mechanical ventilation and standard catecholamine support (dopamine 5 µg/kg/min, milrinone 0.6 µg/kg/min). The anticoagulation prophylaxis was provided firstly by heparin infusion and further by low-molecular heparin supply. The general condition systematically improved.

The child was extubated within 110 hours. Postoperative chest X-ray shown symmetrical blood perfusion of the lungs. Echocardiography done routinely on the second, fifth and tenth postoperative days demonstrated good surgical results with normal bloodflow in both PAs. The boy was transferred to the Cardiac Surgery Ward and then to the Cardiac Ward. Dyspnoea systematically increased. Chest radiography showed growing abnormality in the pulmonary bloodflow. Right ventricle (RV)-right PA pressure gradient was seen on echo-
Arterial switch operation in mirror image dextrocardia cardiography. Angio-computed tomography (CT) scans demonstrated critical stenosis in the proximal part of the right pulmonary artery and mild stenotic changes to the left pulmonary artery (Fig. 1).

The child was referred for interventional catheterisation aimed for PA balloon angioplasty. The angiography, performed two months after ASO (Fig. 2), revealed high RV pressure and hypertrophy. The PA angioplasty was ineffective and the boy was referred for surgical treatment. Significant occlusion of the right PA ostium with retraction of the pericardial patch was found. The PA reconstruction was performed using a large cryopreserved homogenic pericardial patch. The postoperative course was uneventful and the pressure gradient was significantly lower in postoperative measurements (25 torr and 41 torr, respectively). The pulmonary flow distributions in chest X-ray were normal. Angio-CT demonstrated widely reconstructed right PA and intermediate PA with sufficient enlargement of the left PA orifice (Fig. 3). The child was transferred to Cardiac Surgery and then to Cardiac Ward, and discharged home in a good general condition 17 days after surgery. He is still under ambulatory clinical observation without symptoms of heart failure or lung abnormalities in the physical and imaging examinations.

DISCUSSION

Pulmonary artery stenosis remains a rare complication after ASO procedure [4]. Many papers have stressed that fresh autologous pericardium should be the material of choice for a patch graft [4–6]. The slowly ongoing retraction of the pericardial patch was responsible for the gradually increased pressure gradient between the RV and right PA in our case. Fresh autologous pericardium retraction is the effect of mixed reactions including fibrosis, wall thinning and dilatation [7]. Stabilising the pericardial implants (glutaraldehyde rinsing) alleviated the fibrosis and tissue retraction that were observed within the fresh implant [7, 8]. Balloon angioplasty can be the first therapeutic choice, with a low complication rate and the
potential benefit of the procedure [9]. Similarly, endovascular stent implantations are effective and safe, with satisfactory early and mid-term results [10]. Unfortunately, the right PA in our case was too small for these methods. The second surgical reconstruction, using a cryopreserved homologous pericardial patch, was successful. We speculate that patch preparation method prevents their retraction and made this technique sufficient for the prevention of re-stenosis and a significantly improved prognosis.

Acknowledgements
We gratefully acknowledge the support of Dr Maria Zubrzycka, Dr Andrzej Kościesza and Dr Małgorzata Mirkowicz-Malek from the Cardiology, Radiology and Cardiac Surgery Departments at the Children’s Memorial Health Institute. Without their assistance, this paper would not have been possible.

Conflict of interest: none declared

References